Paranormal-themed nonfiction TV: A list

I was writing an article when I realized I needed a clear idea about when this whole amateur investigation reality-television thing became popular. So, I started a list. (I’m a good Googler.) Here is a list of TV shows (series) that portray the paranormal as real or examine it as possibly real. Some are reality-type shows, some are documentaries. (Therefore, I have also included some shows on here of a skeptical nature.) Some are not wholly paranormal-themed but they contain an element that suggests a particular subject or event is beyond that which is currently accepted in the scientific community. I realize the line can be blurry.

Since one of my areas of interest is how the media promotes a view of science and the scientific to the public, I think the popularity of these shows is important. There is some research into how paranormal/supernatural themed shows affect the public belief in the paranormal, but there is LITTLE to NO research on how reality-type shows affects this or, regarding my interest, how the public perceives the “scientificity” of these shows.

I cataloged 125 shows ranging in premier dates from 1949 to some upcoming ones on the horizon. Read More »


Ghost hunters as “really good researchers, I guess”

Story from The Onion: ‘Ghost Hunters’ Enjoys Surprising 100% Success Rate

“What can I say? We’re just really good researchers, I guess.” At press time, despite having repeatedly resolved the most central question of human existence, the program is somehow not on the cover of every major newspaper, magazine, and scientific journal in the world.

Sure, we can all laugh at how sharp and witty The Onion is. It’s a little strange to get such accurate news (through a satirical filter). Why are the Ghost Hunters convinced of their work? Why do they think that they are doing “research”? Well, wait…aren’t they doing research? If we define research as a systematic way to collect data and information in a sustained way, then, sure, I guess they are doing research.

But their research isn’t taken seriously. It’s not scientific. There are many reasons why paranormal investigators work falls way short of being “scientific”. I’ll just focus on the primary reason – paranormal bias.Read More »

Everyone panic. Or not.

A few weeks ago, I moved my desk next to an upstairs window overlooking a Bradford pear tree. For the past 3 weeks, when I sat at the desk during the day, periodically, a flock of about 50 starlings would swoop in and land on the tree,  devouring the shriveled fruits up like grapes. Then, in a whoosh, they would be off. Sometimes I would hear them clamor on the roof. This has happened no less than a dozen times. They seemed hungry. 

On my way home from work over the past month, I noticed crows arcing across the sky across the interstate from as far as I can see from left to right. This happened for several consecutive days in the same place.

This is the behavior of birds. It seems remarkable but not too unusual.

On December 26, we were on the beach in South Carolina near Charleston. It was snowing. There were starfish embedded in the sand. The south was experiencing record cold. It happens. I felt bad for the alligators in the swamps.

Suddenly, we experience such a Fortean start to 2011!  A massive and suspicious bird die-off in Arkansas on New Years Eve triggers a wave of mystery, speculation and imaginative explanations fed by more accounts of animal mortality events.  The current media sensation of reporting mass mortality events is very interesting in many ways. Shall we count the ways? Yes, we shall, because it’s fun – fun like outrageous speculation about the end of the world! (Well, if you have a hot-air filled balloon of speculative belief about these things, you won’t think this is fun.)

Read More »

Whispers…Part 3 Anomalies and a new science

This is Part 3 of 3. The entire series is available as a PDF at my website.

Centuries of scientific and popular observations has given us a body of anecdotes peppered with actual physical measurements and recordings of anomalous phenomena occurring prior to large earthquakes. This fact is not in doubt. It has become well known that animals and the atmosphere exhibit odd behaviors that appears to be related to the coming quake. The failure of these signals to become a practical means by which we predict earthquakes in the short term results from 1.) unreliability of the phenomena, 2.) irreproducibility of the phenomena, 3.) inadequate explanation for the phenomena (which follows from the first two). We might add in there a hesitation to divert from the known path in science but that excuse is invalid. There is nothing wrong with holding to a path that has taken you quite far in the correct direction, but sticking to the path can’t hold forever because science progresses, perhaps in a different direction. In terms of earthquake prediction, the time may be now to diverge from the path.

When we consider anomalous earthquake-related phenomena (which I’ll dub ‘AERP’ just to save on typing), we don’t get far by just collecting the stories unless we proceed on to analyze, interpret and explain them. Then, to be of future value, they must be used to predict. Here are some of the theories that have been developed to explain pre-quake AERP such as animal behavior, EQLs (lights), EQCs (clouds), among other, stranger observations.

What happens before a quake

As discussed previously, squeezing, stretching and (micro)fracturing of the rock is inherent in the faulted area. Many AERP appear to have an electrical explanation – related to charged particles, currents and voltage. I do get a little technical in the descriptions that follow. It helps to have a primer in chemistry and physics (which I do have) but I’ll admit I had to look up some reference material in order to make sense out of it. (A great way to learn is to follow through completely on a topic of interest – it takes you to new places.)

First, an obvious consequence of stress and friction is heat. Do fault zones give off heat? The reports of hot, sticky weather preceding a quake suggests that but I had found no evidence to support it. Then, in 2006, Indian scientists report a bloom of plankton offshore prior to a quake may be the result of a release of thermal energy causing the local sea temperature to rise.

It is well known that gases escape from the ground before and during an earthquake. Water vapor, methane and other gases resulting from decomposing organic material may be released. Gas release may serve to explain the (nonelectrical) reports of putrid smells or atmospheric lens effects like observation of an elongated sun or moon before a quake. But, radon, a common, radioactive gas, trapped within rock, is released when the rock forms tiny cracks (microfractures). Increased radon in the air and groundwater has been measured numerous times prior to earthquakes.

Near the epicenter of the 1995 Kobe quake, a mineral water bottling plant noted that the gas content varied in the water prior to the earthquake. In Iceland, a similar observation was noted in 2002 when chemical constituents of a hot spring increased enormously within a 10 week span prior to a 5.8 magnitude quake.

Due to its radioactivity, radon can ionize air. Ionization of the air (by radon or other means) can creates particles known as aerosols. Ions are electrically charged and serve as nuclei for condensation. Aerosol particles can carry soot, dust, droplets, crystals (esp. salt), pollen, even virus and bacteria. The formation and collection of aerosols generated by underground processes would vary depending on the current weather conditions, the geology of the rock and other aerosols in the air. For example, wind and rain will quickly dissipate the particles. Aerosols may only last a few minutes after which they decay. However, if the mechanism that is creating them persists, a new supply can continually be formed.

The aerosol hypothesis, put forth by Tributsch (as an explanation for the various AERP, posited that the coming quake influenced the near-surface atmosphere to such a degree that unusual meteorological events occurred. But, that may be the beginning. There have been reports of metals in gaseous form being expelled in tectonically active areas. These metallic aerosols may play a specific role in the mechanisms that relate seismic activity to anomalies in the upper reaches of the atmosphere (a theory called “lithospheric-ionospheric [or seismo-ionospheric] coupling”).

Animals and people respond to ionized air. Positively charged ions in the air may affect serotonin levels. Serotonin is a hormone that regulates several physiological aspects in humans, such as mood, appetite, and a condition of feeling unwell.

Generating electricity

The idea of earth currents was discussed in 1890 by Milne. In the days of telegraph lines, the wires transmitted signals and static by themselves in response to seismic activity. There are other cases of natural electrical phenomena from the earth other than the usual lightning bolts. Glowing patches on mountains have been observed as the electricity is dissipated into the sky across a broad area. St. Elmo’s fire was observed on the high masts of boats and even occurs on high pointed structures on land with enough regularity for it to have been studied. Earthquake lights may be in the same category as anomalous ball lightning, flickering ground lights or “spooklights” and perhaps even some UFOs in that they result from static electricity generated from the ground surface. The theory that an intense electrical field and electromagnetic pulses are generated at a fault zone can potentially explain the various AERP discussed. Dr. Michael Persinger proposed the tectonic strain theory in 1975 relating light phenomena at fault zones to what eyewitnesses report as UFOs.

Rock can actually produce electricity thanks to the “piezometric” effect. It is the result of the ability of crystals, especially quartz, to generate a voltage in response to applied stress. The act of squeezing a quartz crystal induces a polarity to the crystal (one end positive, the other negative). This allows for a current to travel across the crystal. Piezoelectricity can free electrical charges from atom or crystals. These charged particles are ions that may contribute to the generation of a strong electrical field above the ground surface (or aerosols). Quartz is abundant in the earth’s crust, especially in granite, the common foundation rock for continents. Curiously, in an assessment of areas with and without defined precursors, those zones with quartz-poor rock, such as New Zealand, have fewer observable AERP.

Light can result when bonds are broken in a crystal when it is rubbed or cracked. This is called triboluminescence. The broken bond creates a positive and negative charge that recombine as a spark. It can easily be demonstrated by cracking a LifeSaver candy. It has also been observed while cutting diamonds. Scientists are still far from understanding this effect since some substances exhibit this property while others do not.

If enormous electrical currents are being generated, through known or as yet unknown mechanisms, could they serve as the signal we can measure to predict quakes. Do these mechanisms result in observable surface manifestations (AERP)? The buildup of stress in the rock, and release of electrical energy can feasibly result in a release of light and measurable electricity all beginning with the rock fracturing at microscopic scale. Electrons in the atmosphere are accelerated at the fault zone and they produce light when they strike other atmospheric molecules. The manifestation of different kinds of EQLs could be a result of the difference in charge distribution and the uneven field across different areas.

Laboratory experiments on rock samples, such as granite, subjected to high pressure, show that the electrical resistance of water-saturated rock changes just before it shatters. From experiments, the intensity of the electric field generated was greater through the process of microfracturing the rock than at actual breakage.

A stream of charged particles is called plasma. Examples of plasmas are lightning bolts or candle flames. What observers see as various forms of EQLs may be, in fact, plasmas, a stream of electrons from the ground that generates visible light.

We need to pause here to address why the piezoelectricity theory as a cause of earthquake precursor phenomena has been abandoned by some. It is hard to accept that the rocks can become conductive enough to generate an electrical pulse. The assumption made is that the random orientation of crystals in the rock would not allow for the effect to propagate and that the generated positive and negative charges would just cancel each other out. However, lab experiments have shown that if at least some of the crystals are oriented in the same direction, voltages can occur in rocks under stress. Even if only 1% of the quartz grains are aligned, considerable voltage can be produced.

So, if it is feasible that this can occur, where might that lead? The movement of charge in a rock will generate electromagnetic waves.

Electricity and magnetism

Electricity is related to magnetism. The passing of current generates electromagnetic waves. Prior to strong earthquakes in fair weather, scientists have observed anomalous electrical fields and electromagnetic pulses (in the Ultra Long Frequency range or ULF). Electromagnetic pulses can travel through the ground, air and water. Intense electric fields formed by the microfracturing of the underground rock would extent above the ground surface. Although, there will be regions on earth where the tectonic action is so deep, the ULF waves won’t reach the surface and no precursors would occur.

One explanation for AERP we might discount is a change in the earth’s magnetic field before an earthquake. It appears the change is so small, it is negligible. There is a story of a magnet that hung on the wall in Tokyo. In 1855, nails held by the magnet suddenly fell as if the magnet had lost its power. It may seem that the magnetic field was disturbed but it may very well have been that the electrical charge appearing from the ground overwhelmed the magnet’s strength, causing the nails to sway and be attracted to the ground. We are exposed to weak electromagnetic fields (EMFs) all the time. Many experiments have shown that we generally aren’t affected by them. Animals experience small but unimpressive magnetic field changes periodically and do not frequently act unusual. The change in magnetic field can influence some animals but the field is constantly changing especially during solar wind storms. The change in the field appears to be relatively minor as a result of seismic activity compared to these other influences.

Long wave electromagnetic radiation appears whenever electrical charges are generated or neutralized. Electric charge and electromagnetic signals are not detected by seismographs because there is no vibration. Whereas, a radio receiver is a good sensor to detect electromagnetic waves. AM bands on a radio will transmit the EM noise generated from nearby thunderstorms. Radio interference has been mentioned as a possible precursor to quakes.

A bent candle flame, or a candle that is hard to light or burns inefficiently has been noted as an AERP. Ikeya reproduced this effect by generating a charge on the ground that attracts the flame. Ikeya reproduced many other precursor phenomena in the lab by exploring the effects of electrical fields and EM waves. He produced very good evidence to suggest that these conditions are occurring as part of the earthquake progression and showed that the values that could be produced in nature are reasonable to show effects.

Disturbing the upper atmosphere

If we assume these mechanisms are at work in the stressed rock, large electrical fields can occur hours, days or even more than a month before the seismic release. The seismo-ionospheric theory, in development by Russian scientists for decades, suggests these fields reach so high above the earth’s surface that they can affect the upper reaches of the atmosphere and interact with the earth’s global electrical circuit. This area of the atmosphere where the interaction is seen is called the ionosphere. It is a zone 50-1000 kilometers above the surface. Soviet military satellites first recorded changes in the ionosphere in the days before large quakes.

The ionosphere starts to “feel” the zone of pending seismic activity from the preparatory mechanisms of a magnitude 5 event and above. U.S. scientists have not caught on to the foreign ideas but more experimentation and modeling has produced a viable theory that is being tested. First, the physical mechanisms must be studied and understood before any promise of prediction can be examined.

Low altitude satellites have recorded seismo-electromagnetic waves over earthquake-prone areas such as Armenia. The ionosphere disturbances over other seismically active locations have been recorded.

Curiously, the generation of these charges on the ground may not necessarily mean that a massive fracturing of the rock (an earthquake) will occur there. It can instead indicate that the fault movement is blocked. Thus, we can only say that the electromagnetic phenomena indicates rock fracturing with a possible earthquake to follow.

Can we explain EQLs?

Until recently, most scientists rejected the reality of earthquake lights because there was not a satisfactory means to account for their origin. The lights do not appear as regular alarm signals before a quake but are contingent upon whether the required large electrical energy has built up. This only happens when the subsequent quake is large. Lights appear to be evidence that an electrostatic charge is present.

According to calculations by Ikeya, the shape of the glow produced by an intense electrical field generated via underground fracturing would be a dome or ball shape. Relating EQLs to animal behavior, the concentration of air ions can be less in order to produce animal behavior anomalies than that which must occur to produce EQLs.

Can we explain EQSs?

Earthquake sounds may be generated by stress and local fracturing in massive rock. An example of this stress phenomena can be noted when you are near a metal or wood structure on a hot, sunny day. As the air warms or cools rapidly, the change in temperature results in stress in the material that gives a noticeable “crack” on occasion. The material is not visibly damaged but the stress was released. Ultrasound and infrasound might result from rock cracking. Perhaps only some people are sensitive to these frequencies that might be out of the range of hearing for the average person. Some animals may be sensitive to them as well. But sound as a precursor is not very reliable since the sound can be swamped by background noises or dampened within the rock. So, we have some idea about how EQSs might come about but no body of evidence.

Can we explain EQ weather?

The release of gases, formation of aerosols and electrified air might play a part in the formation of anomalous clouds and fogs reported as part of “earthquake weather”. The ionization process can explain a feeing of hot, oppressiveness that hangs over the land. While no particular type of weather causes earthquakes, there may be circumstances in which factors combine to signal changes happening in the earth below.

Can we explain animal behavior?

Animal reaction is most likely to be a combination of several factors. Not all animals are sensitive to the same environmental stimuli. Some are acutely sensitive to smell (dogs) and others are not (birds). Some can sense vibrations but others, such as domestic animals, are surrounded by vibrations and noise that cancel out subtle signals.

Animals can be very sensitive to electric fields. Some have organs specifically for navigating or catching prey using electrical signals. Sharks and catfish, in particular, have extraordinarily sensitive electrosensory systems used to capture hidden prey and for communication, orientation and navigation. Mammals have hair that acts as a sensor for electrical fields. Even feathers, whiskers or antennae may be receiving electrical signals from the environment.

An electric field induces current to flow in the body. The animals, plants, objects and atmosphere may all be responding to the seismo-electromagnetic signals from the epicentral area of the coming quake. The generated electrical fields are strong enough for their local discharges to generate high frequency EM waves. A great number of results show revealing background anomalies in EM emission levels right up to the moment of the quake that may even continue after.

Animals also have been reported to act unusually before and during other catastrophes like storms, tsunami landfalls and during a house fire. These are also examples of where the precursors or early conditions may be perceived by animals but not by humans. Crocodiles in Japan behaved violently prior to an earthquake in the area and had similar behavior prior to approaching storms which may indicate they are responding to EM waves. Because we see parallels in behavior between coming storms and earthquakes, perhaps the underlying reason is also the same.

If we consider the process where the rock fractures on a small scale prior to breaking at the large scale and giving way to the quake, and that this creates EM pulses, then compression of rock in experiments should produce the desired effect. In fact, animal experiments have shown that mice become restless and show signs of fear and distress when in proximity to rock under pressure prior to bursting. Anecdotal evidence also exists for animals to sense rockslides and move away from the affected area days before an event.

Experiments showed that the electrical field values and their effects were consistent between that which might be generated in a seismic event and that which was recorded as affecting animal behavior. Ikeya posits that local stress changes in rock generates charges via the piezometric effect during microfracturing, frictional electricity or fluid flow electrokinetics. As an electric dipole collapses, it produces EM waves in pulses. The animals respond physiologically to the electro-phenomena. By using experimental results on the tolerances of animal behavior to electrical effects, he can estimate the electrical field strength needed to produce such effects. He estimates that a large earthquake, producing six billion watts (a small fraction of a large earthquake), can theoretically produce these effects.

Regarding EM pulses, some animals respond through surface contact and some can perceive it through the air. Ikeya’s experiments showed animals expressed distress when the applied voltage was effectively too low to actually hurt them. His experiments reproduced the reported behavior of animals before earthquakes by using generated EM waves. However, it does appear to depend on the particular species and individual sensitivity with some animals – like mice, rats and parrots – showing odd behavior at low currents. Animals attempted to move away from an electrical field. In addition, they tried to minimize the effect by avoiding water, rubbing or preening themselves in an attempt to relieve irritation, minimize contact with the ground, stay in contact with metal and aligning their body with or against the field. To produce a response, he notes that the earthquake must be greater than M4, the animal must be within 30 km of the epicenter and the intensity of the field must be greater than 1 volt/minute. The mechanism by which animals respond to EM waves is not clear.

The evidence does suggest…

While there are many, many questions that remain, experimental results have shown that the anomalies might be reproducible in a lab or a reasonable theory can be posited for them. In summary, those atmospheric changes can be accounted for if the electrical effects resulting from stressed rock conditions are occurring. There may also be some unknown mechanism at work underground that scientists have not yet measured or accounted for.

State of Prediction

It wasn’t until around 1800 that theories about the causes of earthquakes included the idea of precursors in the research. Precursors, such as water level changes, were just “curiosities of nature”. In the early 1900’s, an instrument, called a “coherer” was used in Italy to detect electromagnetic emissions, probably the first attempt to produce a practical device to recognize precursors before a quake.

Decades ago, the theory of rock dilatancy prior to a quake was tested. Dilatancy is when the rock develops cracks (or ‘dilates’) due to stress. This process might be measured through observance of the following: a lowered velocity of artificially (or naturally) generated seismic waves, ground uplift or tilt, increased radon emission, lowering of electrical resistivity through the rock. After the initial dilatancy (increasing the volume of the rock), there was presumed to be an influx of water into the fault zone as a result. Consequently, the seismic pressure wave speed would return to normal, the electrical resistivity would continue to lower and there would be an increase in the number of small local quakes just before the fault ruptured. Result of employing this theory for prediction were less than stellar and it was, more or less, abandoned, though not invalidated, as seismologists pursued the idea of foreshocks to predict the main shock.

In the last 20 years, the study of changes in electrical fields before earthquakes has made progress first begun in Greece, Japan and France. Seismologists were skeptical. But, the results were valid. Changes prior to earthquakes have been measured and electromagnetic anomalies have been documented. It is still not clear how the measured anomalies are linked with the quake itself, what they mean, and how they can be potential used as a predictive tool.

There are difficulties in measuring electromagnetic changes associated with earthquakes because of all the other sources for these waves – lightning, magnetic storms, artifacts from culture machinery. To eliminate the noise, the best locations to monitor appear to be deep boreholes or the sea floor. That’s not too practical. There are regular variations (hourly, daily, seasonally) in addition to a noisy background in the atmospheric electric parameters from storms, precipitation, winds, dust, etc. These factors complicate the processing of data to determine if a seismic-generated signal is within it.

Radon monitoring is being used to look for a characteristic rise and decrease in radon just before a quake. Observation of water levels is an inexpensively measurable precursor but gives us little information as to when and where the quake might occur.

The most cited example of animals aiding earthquake prediction was during the 1974-1975 lead up to the Haicheng, China quake. Along with the strange animal behavior observed by everyday folk, other ground indicators suggested the quake was near and prompted the government to act. A 7.3 magnitude earthquake occurred, 50% of the buildings were destroyed around the epicenter but there were few human victims. But, animals don’t always react reliably before a quake. Their behavior is not consistently recognizable as odd or indicative of a coming quake. There may be several alternate reasons why animals behave differently than normal. Therefore, animal behavior isn’t the best gage to use to predict quakes.

Satellites have provided us with unique views of our world. Remote sensing equipment that measures changes in the ionosphere is proving to be worthwhile tool to help judge where the next epicenter will be. Ionospheric precursors give a quite reasonable and useful expectation time of 1-5 days. A statistical study done by Chen in 1999 showed that ionospheric precursors occurred within 5 days of a magnitude 5 event 73% of the time but 100% of the time for magnitude 6 quakes. The one- to five-day interval has been well established for ionospheric anomalies. There are complex electrodynamical, meteorological and chemical processes involved in producing an ionospheric disturbance. But satellite studies have clearly indicated the region of the future quake.

A New Science

An earthquake of magnitude 5.7 occurred near Coyote Lake California in August 1979. The area was loaded with geophysical instruments. Not a single precursor was identified via these instruments. However, the local spring experienced a change in water level and some abnormal animal behavior was reported. Along with the Parkfield experiment to capture an earthquake that finally occurred in 2004 (with no obvious precursors), hopes for prediction waned. What are the precise conditions under which an earthquake preparation area exhibits precursory activity? Not only are these conditions unknown, but the actual occurrence of precursors is still widely doubted by seismologists.

If charged particles are indeed released from the ground prior to a large quake, what might be measured to help in prediction? Release of gases, positive ions near the ground surface, change in the atmospheric electrical fields above the fault area, change in the vertical stream of ions into the atmosphere, increase in EM radiation, appearance of electrical earth currents, changes in the electrical potential of groundwater or surface waters. The trick is what to measure and how to do it.

Much has been learned about the earth signals before a quake. The most important may be the electrical effect. Ikeya hopes that recent progress will spawn a new discipline called “electromagnetic seismology”. The most interesting aspect is how wide-ranging the effect may be. It was previously assumed that any changes in the ionosphere were caused by environmental variability, geomagnetic storms and the like. Now, the thought is that seismic activity around the globe may play an important role in its variability.

Lithosphere-atmosphere-ionosphere coupling is a very complicated subject involving an array of physical effects and interactions on all levels from underground to the earth’s magnetosphere. The volume of knowledge is so large, it is hard to research the topic in all directions. Starting in the 1930’s, from observation of seismogenic electric fields, the idea of connecting the lithosphere effects with the atmosphere has been a zone of conflict. Because of the interdisciplinary aspects, the field is off limits to many scientists. The theory requires knowledge of tectonics, seismology, atmospheric and ionospheric physics, chemistry and electricity. Discussions between experts in these various groups ends up in complications and disagreement.

For short-term prediction and accuracy, we are hardly farther along than the ancient observers were. However, the new theory of seismo-ionospheric coupling is very promising. Russian scientists, such as S.A. Pulinets have called for a satellite system with ground-based measurements to analyze the anomalies and possibly turn them into a predictive method. Measuring only one parameter will not give enough confidence for prediction.

U.S. Scientists are now examining this idea. An ionospheric perturbation was produced by the Coalinga, California earthquake of May 2, 1983, detected by a network of high-frequency radio links in northern California. If we look for more, it seems likely that we will find more evidence to support this phenomenon.

The topic of earthquake prediction highlights the value of reported anomalies. We have seen how many anomalous observations by average citizens and seasoned experts formed the basis for learning valuable lessons about earth. A unifying theory to explain the reports gives them credibility. While not all the anomalies can be adequately explained, it is the hope of those who report and study them that one day they will fit within a scientific explanation. When scientists, such as Tributsch and Ikeya, proceeded with their research and publication, they were met with rejection from other professionals who did not judge citizen observation worthy of scientific research. Delving into these topics mean grants are hard to come by, your professional reputation can become tarnished. But, the public and mass media can be your strongest support. They expect science to get to the root of these stories. Scientists are reluctant to leave the safe environment of their practice. That attitude undermines the strong public interest in the phenomenon. Curiously, cultural differences may play a role with the western scientists less open to these ideas that may taste of superstition, while other cultures have different thoughts.

The public expects progress in science to develop ways to make them safer. Science progresses in pulses. The previous failures in EQ prediction do not necessarily mean that it can’t be done, it means we may be looking in the wrong places for answers. It does appear that there were many cases where we had adequate data prior to the quake but it was not properly used to save lives. As we saw in the Asian tsunami disaster, a coordinated effort is critical to success.

As a scientist, a geologist, I am admittedly out of my range of expertise when it comes to understanding the concepts and theories associated with these emerging ideas about the lithospheric-atmospheric connection. But, after much musing, it makes sense that processes on earth are interconnected. It does give me hope that the eyewitnesses and experimenters ridiculed by science and the anomalous observations once rejected, are now being accepted as valid. It is heartening to see that we may be on a path now to understand how the earth alerts us to catastrophic events and how we can use the signals along with personal precautions to minimize or eliminate the associated suffering and death. That’s the ultimate purpose of science.

BBC News.(2006) “Plankton Blooms linked to quakes”, May 9, 2006 from accessed on May 12, 2006.

Bolt, Bruce A.(1993) Earthquakes, W. H. Freeman and Company: New York.

Corliss, William R. (1983) Earthquakes, Tides, Unidentified Sounds and Related Phenomena, The Sourcebook Project: Glen Arm, MD

Corliss, William R. (1995) Handbook of Unusual Natural Phenomena: Eyewitness Accounts of Nature’s Greatest Mysteries, Gramercy Books/Random House

Geller, Robert J. et al. (1996) “Earthquakes Cannot Be Predicted”, Science 275 (5306): 1616.

Gokhberg, Morgounov, and Pokhotelov (1995) Earthquake Prediction – Seismo-electromagnetic Phenomena, Gordon & Breach Publishers.

Hough, Susan E.(2005) “Earthquakes: Predicting the Unpredictable?”, Geotimes, March 2005.

Ikeya, Motiji (2004) Earthquakes and Animals: From Folk Legends to Science, World Scientific Publishing Co., Pte. Ltd.: Singapore.

Martinelli, Giovanni.(1998) “Earthquakes, Prediction” in Sciences of the Earth: Volume 1, Edited by G.A. Good. Garland Publishing, New York.

O’Hanlon, Larry (2003) “Earthquake Warnings in Ionosphere?” Discovery News (Discovery Channel), March 27, 2003.

Pulinets, S.A. (1998) “Strong Earthquake Prediction Possibility with the Help of Topside Sounding from Satellites”, Advances in Space Research, Vol 21 No 3.

Pulinets, S.A. (1998) “Seismic activity as a source of the ionospheric variability” Advances in Space Research, Volume 22, No 6.

Pulinets, Sergey and Kirill Boyarchuk (2004) Ionospheric Precursors of Earthquakes, Springer-Verlag: Berlin Heidelberg.

Serebryakova, O. N., S. V. Bilichenko, V. M. Chmyrev, M. Parrot, J. L. Rauch, F. Lefeuvre, and O. A. Pokhotelov (1992), “Electromagnetic elf radiation from earthquake regions as observed by low-altitude satellites”, Geophys. Res. Lett., 19(2), 91–94.

Tributsch, Helmut (1982) When the Snakes Awake: Animals and Earthquake Prediction, MIT Press: Cambridge MA.

U.S. Geological Survey

Veysey, John (2004) “Icelandic Water gives clues about quakes”, Milwaukee Journal Sentinel, Aug 8, 2004 accessed Aug. 10, 2004.

Wu, C.(1997) “Impurities give crystals that special glow” Science News Online, May 17, 1997

Whispers…Part 2

Of all the natural disasters we experience regularly here on Earth, the most violent and destructive are earthquakes. Thousands are killed each year, especially in poorer countries where buildings are not designed to withstand the violent shaking and rolling of the ground.

I’ll continue my discussion of currently unexplainable or poorly explained phenomena that have been consistently, reliably reported (and now even recorded) prior to strong earthquakes.

Earthquake Weather

“Something’s coming, sky is purple
Dogs are howling to themselves
Days are changing with the weather
Like a rip tide could rip us away” – Beck Hansen, “Earthquake Weather” from the album Guero (2005)

If you live in an area prone to earthquakes, you might know the stories about earthquake weather. Earthquake weather is said to be a dry, hot, oppressive calmness. It leaves one with the miserable feeling that something bad is about to occur. People feel weak, nauseous and uneasy. There are also reports of the atmosphere being thick with smoke, dust, fog or vapors. Thunderstorms were associated with earthquakes. The moon or sun were red, were surrounded by a halo or elongated in shape. The stars appeared closer. Short-arc vertical or horizontal rainbows have been seen. Early observers, like Aristotle, noted these unusual weather characteristics.

There are numerous instances of bizarre-shaped clouds (earthquake clouds or EQCs) appearing in the sky days before an earthquake. Prior to the 1995 quake in Kobe, Japan, several were captured in photographs. Proverbs tell of dragon or snake-like clouds foretelling the coming of the earthquake. A large cloud also appeared suddenly in a blue sky moments before a quake in Tokyo, Japan in 1923.

EQCs are stationary and do not drift away like normal clouds. Diffuse, low clouds settle into a fog. Earthquake fogs (EQFs) are commonly associated with a coming quake and were described in historic documents. Fogs and clouds were so connected with the strong tremors that it was once thought that they were the cause of the quakes that followed soon after. Aristotle called it “pneuma” meaning breath of the earth. There are historic and current reports of this “breath” having a sulfur odor or a smell of decay. Mainstream science does not correlate these atmospheric changes with seismic activity and does not consider these as precursors that can predict a coming quake.

Glows, balls and curtains of lights

Gaining more credibility as an earthquake precursor are luminous phenomena that occur before or during a strong quake. The high quality evidence for these events comes from historical writings especially from Japan where earthquakes are very common.

Earthquake lights (EQLs) come in a great variety of shapes and colors and can appear out of the ground or from the sky. They can be seen moments before a quake as a glowing dome or as flashes, curtains, sheets, funnels, arcs or balls that may even travel along the fault line in blue, red, green, yellow, orange, purple or white. Link to USGS page.

EQLThe dozens of good EQL photographs helped bring EQLs out of folklore and into the realm of scientific investigation. However, there is still no good explanation available mainly because a way to objectively measure these lights does not exist.

There is an even stranger account of balls of lights that comes from fishermen in Turkey before a 1999 quake. They described fire balls (ball lightning?) in the sky and undersea explosions with bright balloons of light ascending through the water. Their fishing nets were burned. What does one make of this?

Modern science rejects reports such as this. As in the other prequake anomalous occurrences, without data – collected in an objective way – the idea of EQLs cannot be seriously evaluated.

What in the world is happening?

Unusual animal behavior, anomalous atmospherics, light displays, sounds, spooky happenings around the house. Is the earth sending signals to which we fail to listen? It all sounds bizarre. How can all these things seemingly occur before earthquakes and we can’t explain it?

The first question that must be asked is: “Are these things really happening as people have described?” Can this be a case of mistake observations, observations after the fact (where we attribute every little thing as associated with the quake), or hoaxes?

As noted above, precursors of earthquakes have been reported in ancient times. They described phenomenon that is generally the same as that experienced today. Now, there are instances where many, many reliable observers have documented these events, even by camera, videotape and sensors.

The reports have entered the field of mainstream science. Though few scientists are willing to study them, there has been some advancement towards understanding. For example, Ikeya has determined that there is sufficient correlation between time and location of phenomena that shows the events are definitively related to the subsequent quake.

But how does one study these events? We can’t predict earthquakes so how can we be prepared to study precursors? More importantly, how do governmental and university scientists obtain funding to study phenomena that many discount? Those scientists that do go against the grain have suffered some professional discredit, even when their experiments produced results. But, there results have promise.

Several theories have been mentioned with respect to the above ground phenomena that occur in conjunction with below ground activity. Newer theories are being formed that suggest the earth often tells us well in advance that she is about to heave.

A theory must account for an invisible source that causes these observations. There are scads of invisible sources that may account for these observations. Gases, charged particles (ions), electrical fields, magnetic fields, infra- or ultrasound, infrared or ultraviolet light – sources that people can rarely detect without assistance of equipment. An invisible source may be detectable to animals or everyday electronic devices or may interact with the environment in such a way as to become noticeable to people.

What happens prior to the quake? Rock is being strained, compressed, heated and bent, down to the very crystals, before it finally breaks en masse. Before the rock mass breaks and unzips, it cracks. Tiny cracks form in the rock structure. The stress and strain placed on rock in an active fault zone changes the properties of the rock. If it changed, can we measure it? If we can measure it, can we use it to predict when the quake will occur?

Coming up (when I manage to pull it together in a cohesive explanation that I can understand), cutting edge science and research on earth signals before a quake. They really are out there.


Bolt, Bruce A., 1993, Earthquakes, W. H. Freeman and Company: New York.

Corliss, William R., 1983, Earthquakes, Tides, Unidentified Sounds and Related Phenomena, The Sourcebook Project: Glen Arm, MD

Corliss, William R., 1995, Handbook of Unusual Natural Phenomena: Eyewitness Accounts of Nature’s Greatest Mysteries, Gramercy Books/Random House.

Gokhberg, Morgounov, and Pokhotelov, 1995, Earthquake Prediction – Seismo-electromagnetic Phenomena, Gordon & Breach Publishers.

Ikeya, Motiji, 2004, Earthquakes and Animals: From Folk Legends to Science, World Scientific Publishing Co., Pte. Ltd.: Singapore.

Pulinets, Sergey and Kirill Boyarchuk, 2004, Ionospheric Precursors of Earthquakes, Springer-Verlag: Berlin Heidelberg.

Tributsch, Helmut, 1982, When the Snakes Awake: Animals and Earthquake Prediction, MIT Press: Cambridge MA.

Continued at…

Whispers from the Earth

I spent a significant portion of my reading time the past year researching the latest ideas about earthquake prediction. I’ve always been fascinated by reports of earthquake lights and animal behavior foreshadowing a quake. One of my favorite books is “When the Snakes Awake” by Helmut Tributsch. I recently reread it and it prompted me to look into the recent state of earthquake prediction.

My journey took me back to the oldest ideas about earthquake prediction. In the face of the failure to develop a reliable prediction strategy in the U.S., (with a corresponding emphasis on preparedness, instead) other countries have taken a different path – a path nearer to the fringes of science. Lately, those fundamental earthquake prediction ideas are back in the news out of China with a technological twist.

Reuters news article

Snake behavior is now being used as an indicator of a coming quake in southern China. Video cameras transmitting across a broadband Internet connection film captive snakes while experts watch for unusual behavior, such as frenzied attempts to escape.

The more I looked into these “primitive” forms of earthquake sensing, the more reasonable it seemed. Animals are not the only environmental channels we have available to tune in to oncoming quakes. Here are some of my findings over multiple posts.

Scientists have struggled to understand how earthquakes occur. Precisely where? Exactly when? How strong? We know that an earthquake is a movement of the earth’s surface caused by the dislocation of the plates that make up the crust or a release of energy from underground stresses. Today, seismologists know far more about earthquake processes than ever before but still they fail to predict earthquakes with certainty in workable time frames and thousand of people die.

In the 1970’s, scientists were optimistic that earthquake prediction was possible through the warnings from precursors. They thought that foreshocks occurred in a predictable way to be able to tell when the main shock was close. They observed some earthquakes occur when there was a gap in time or space along a fault. Measurements of how fast certain vibration waves passed through the ground seemed to suggest a predictable change occurs prior to an earthquake. When research showed that these techniques only worked sometimes, not nearly all the time, the attitude of seismologists soured on earthquake prediction especially in the U.S.

An article from the journal Science in 1996 was titled “Earthquakes Cannot Be Predicted”. This punctured the balloon of any who thought that earth movements were knowable. The expert consensus was that the faulted areas were so different, with individual stresses and physical conditions, and reacted so uniquely, it was not possible to be successful at wholesale prediction.

Perhaps that conclusion was correct for that moment in time. But, should they have given up? New and innovative ideas about earthquake prediction were developing in other countries like China, Japan and Russia. We can look back to ancient times for the root of these new ideas. Long ago, farmers, peasants and early naturalists noticed the clues the earth was revealing that meant the stress was building deep underground, about to give way.

Animals Gone Crazy

Of all the scientific anomalies that are related to earthquakes and earthquake prediction, none is more curious or mystifying than the heaps of reports on strange animal behavior prior to earthquakes.

From the time ancient people recorded their thoughts about the shaking earth, they have remarked upon the behavior of their animals. The best known story comes from Japan, where a huge catfish living under the ground was thought to cause the earth to heave whenever it wiggled. Catfish have been observed to jump and twist violently right before a quake. It is very likely that the observations helped craft the myth.

Along with fish, both domestic and wild, a wide variety of animals have been described in anecdotal reports as sensing a coming earthquake. Their actions greatly differ.

Some animals eat more.

Birds change their songs or sounds; they refuse to land or preen their feathers constantly.

Underground animals come to the surface.

Caged or penned animals become highly agitated, aggressive, fearful or try to escape.

Wild animals will leave an area.

Domestic animals, such as cats, will remove their young from buildings, clean themselves frequently or be especially attentive to their owner, crying or acting nervous.

Dogs notoriously howl or bark and become preoccupied with sniffing the ground.

Insects may suddenly disappear or appear in swarms.

Aquatic animals leave the water or head far out to sea.

Animals may act confused and appear in unlikely areas.

The strange behavior may be exhibited seconds before a quake or up to a month before.

Recently, minutes before Hawaii’s 6.7 magnitude quake this past October, a local television reporter noticed fish jumping out of a lagoon. Even for a small tremor, estimated at 2.4 magnitude in mid-December in Sinking Spring, Pennsylvania, locals reported that their dogs were subdued or nervous in the hours before the quake. Also in mid-December, the obituary for Max the pig, beloved pet of actor George Clooney, gives the animal credit for waking George minutes prior to the onset of a California quake years ago.

In China, changes in animal behavior is so accepted as a precursor to a quake that they printed informational booklets to give to the public. In 1974-5, in Haicheng, a strong earthquake was preceded by a long list of animal anomalies that were recorded by the population with the data fed back to scientists. Along with other precursors, the animal behaviors were credited with helping to predict the quake and save many lives.

With the huge variety of animals reacting to some signals from the earth, they can’t all be responding to the same signs. Different animals are sensitive to different things.

People are probably the least sensitive animals since we see, hear, smell and perceive far less of the natural environment than animals do. However, even people occasionally react to earth signs. Data collected before the Kobe, China quake in 1995 revealed that children in the fault area awoke before the quake and people reported unusual feelings of fatigue, dizziness or illness.

The American seismology community flatly denies any suggestion of animals as earthquake predictors. Their valid reasons include the range of behaviors as mentioned above, the inability to measure animal behavior, and the frequent lack of animal anomalies before quakes. What do animals react to? Can we ever measure what they feel?

To add more weirdness to this picture, we must include plants as potentially being responsive to earth signals. Some species grow vigorously, other bloom early, rebloom or wilt. Others close their leaves or tremble in still air. With roots reaching into the ground, do they detect signals that we miss?

Earth Sounds

Does the earth moan and groan before a rupture? How about howl and whistle?

Howling and whistling noises have been described associated with tremors. Explosive, echoing, or rumbling sounds (earthquake sounds or EQSs) were heard by local people in earthquake prone areas around the world minutes, hours or days before quakes. These sounds are rare but where they do occur, they are reported again in quakes that follow. Sounds like these have not been recorded by scientists who have no explanation for what causes them.

Paranormal effects

A ghostly new phenomena, not mentioned in the ancient reports, is the response of electronic devices to unseen signals before a quake.

Clocks stop or the hands rotate quickly. Appliances suddenly turn on. Cell phones ring without callers. TVs flicker and display distortion. Intercoms buzz. Florescent lamps dim.

In the days of telegraph wires, signals and static were transmitted out of nowhere.

Magnets holding nails suddenly lose the attraction and the nails drop.

Candle flames bend and distort without a breeze. Fires do not get hot enough to cook food.

There are also reports of corked wine turning cloudy or milk spoiling overnight.


It is common to note water levels in wells and on the surface suddenly drop prior to a quake. Groundwater becomes cloudy or muddy and may change in taste or odor. The sea may become still as glass. Ponds may become murky. Incidentally, groundwater levels in Pennsylvania were affected subtly, but noticeably, by the Alaska earthquakes of 1964 and 2002 and Virginia water levels jumped then dropped in response to the 2005 giant Asian quake (that spawned the deadly tsunami) so we know that the mechanisms are widespread as a result of the quake.

What other clues can be found if we only pay attention? Not only are they on the ground but they are in the air.

More to come next post about earthquake lights and earthquake weather…


Bolt, Bruce A., 1993, Earthquakes, W. H. Freeman and Company: New York.

Corliss, William R., 1983, Earthquakes, Tides, Unidentified Sounds and Related Phenomena, The Sourcebook Project: Glen Arm, MD

Corliss, William R., 1995, Handbook of Unusual Natural Phenomena: Eyewitness Accounts of Nature’s Greatest Mysteries, Gramercy Books/Random House

Geller, Robert J. et al. “Earthquakes Cannot Be Predicted”, Science 275 (5306): 1616.

Hough, Susan E. “Earthquakes: Predicting the Unpredictable?”, Geotimes, March 2005., January 8, 2005 “Asia Quake Impacts Va. Well-Water Levels”.

Ikeya, Motiji, 2004, Earthquakes and Animals: From Folk Legends to Science, World Scientific Publishing Co., Pte. Ltd.: Singapore.

Pennsylvania Department of Environmental Protection, “Pennsylvania Wells Record Effects of Alaskan Earthquake”, Update, November 12, 2002.

Tributsch, Helmut, 1982, When the Snakes Awake: Animals and Earthquake Prediction, MIT Press: Cambridge MA.


Unexplained Blobjects

I love when a creative word is coined that so neatly (and humorously) describes a cultural meme that needs describing.

Several months ago, I came across a favorite new word, my neologism of the year.


While examining the questionable Sasquatch (Bigfoot) photos that pop up regularly on the Cryptomundo blog, I was introduced to the descriptive term “Blobsquatch” – a perfect label for those photos that show a dark or washed out, undetailed mass usually surrounded by trees or half-obscured by other natural features. I queried Loren Coleman, the primary blogger on the site and renowned cryptozoologist, about the origin of this most excellent contribution to fortean slang. (See “Blobsquatch Babel” post of June 28, 2006.) He helpfully produced some further information. (See “The Short History of Blobsquatch” post of November 25, 2006.)

Loren and other Bigfoot researchers describe a “blobsquatch” as the object in a photograph that lacks definition and detail but is put forth to the viewer as (potentially) a Bigfoot/Sasquatch. In most cases, the object is a trick of light and shadows, or a mundane object, whereby the human imagination assists in “seeing” a legendary creature. The word was first coined and popularized in the Bigfoot online forums around 2002. No specific photo is credited to have prompted the coinage but kudos are due to the creative mind that birthed it.

Blobs, globs and lake monsters

My follow-up question was – just what does one call the similar phenomenon that occurs with lake monster sightings? One helpful commenter on Cryptomundo offered “Blob Ness Monster”. The media would latch right onto that.

I prefer the term “blobster”, as in lake or sea blobster. Examples: The famous Surgeon’s Photograph at left, Sandra Mansi’s photo of Champ here and the latest (impressive) video still-shot of Champ.

Nessie - Surgeon’s Photo

Blobster is sometimes used interchangeably with the word “globster” to describe a large, shapeless mass of organic material that washes up on shore. Most often, globsters have been analyzed to reveal they are the least appetizing remains of basking sharks or whales churned about by the sea.

Being a stickler for semantics, I turned to Mr. Webster to help out by differentiating between globs and blobs. ‘Glob’ is a blend of the words ‘globe’ and ‘blob’. So, globs are rounded masses. ‘Blob’ can be defined as “something ill-defined or amorphous”. Clearly, our potential Bigfoots aren’t really globular, they are more blobular, thus Blobsquatch is the ideal term. But, our globsters can be blobsters too. Personally, I prefer globsters because it has more common usage, apparently first coined in the press (by Ivan Sanderson?) to refer to a formless carcass beached in Tasmania in 1960. See American Monsters article.

Incidentally, when you blend two or more words together to form a new one, it’s called a “portmanteau” word. This blending technique has become increasing popular to describe the phenomena of superstar celebrity couples, i.e. Brangelina, Bennifer, TomKat, etc. Fortuitously, I came upon another fortean portmanteau that captures a similar concept as our Blobsquatch.


I submit “blurfos” as another one of those perfectly descriptive words (though not as laugh-out-loud funny as the first example). By just seeing or hearing this word in context of UFOs, you know exactly what it means. And, it also aptly describes the result of attempting to use photo evidence to prove the existence of a dubious unknown.


A theme began to emerge. I found other examples of ambiguous photographic “evidence” of strange phenomena.

With respect and apologies to Steven Skov Holt and Karim Rashid who popularized the concept of “blobjects” to describe certain interior design features (and the VW Beetle), I will use that nifty 21st century word to encompass this realm of nebulous visuals. It just fits, doesn’t it?


We’ve all captured “orbs” in our snapshots.

Orbs commonly appear when light, or especially the camera’s flash, bounces off specks of dust, aerosols, water vapor, little bugs, or other reflective things out of the camera’s focal range. Orbs appearing in the context of hauntings are identified as balls of energy produced by spiritual entities. In the same context, the striking appearance of streaks of light or misty clouds that were not noticed by the photographer during exposure are labeled as ghost photos. Orbs captured on video are even more fascinating, moving with (what seems like) intelligence. Mists or shadows that take on a human-like shape and move about have been recorded on video. I’m not convinced they are genuinely paranormal entities but they are strange and curious nonetheless. Their appearance begs for explanation.


Another possible trick of light and shutter speed can result in “rods” or “skyfish”. These white or rainbow-colored, spiral shapes have been captured streaking through the skies and out of caves. Just what they are is unknown. Do they show a new form of life living in the air around us that we never perceive? Or, are they light reflections and distortions produced by tiny animals or atmospheric disturbances? Rods also show up on video where their movement is distinctly lifelike. We can’t rule out explanations that implicate the optics and workings of the camera but, again, it is a question worth asking – what is that?

Everyday Blobjects

Digital cameras are ubiquitous in our modern society. While you may not carry a full-size SLR camera with interchangeable zoom lenses around with you, it seems everyone is within shouting distance of someone with a keychain camera or a camera phone. Many people keep disposable cameras around in case of emergencies. But, the quality of the most portable cameras is not terrific. One is very limited in choosing settings for shutter speed, aperture, resolution and zoom. Inevitably, a small object in a wide range of view dissolves into pixels upon close up inspection.

It is relatively easy to produce a blobject of your own on film.

Once, a colleague of mine inadvertently captured a blurfo with a digital camera during the airspace shutdown after September 11, 2001. The object was not the center of focus for the picture and we can never resolve exactly what it is in the picture. (Blurfo in upper right quadrant.)

Not a UFO. Probably.


Orbs have appeared in my family vacation photos from the beach and in snapshots taken at dance recitals. Are they spirits? I hardly think so. Why are these blobjects blurred or out of focus?

Distance is a problem. An auto-focus camera will lock onto the main object such as tree or person unless you specifically attempt otherwise. At far distances, small objects lose resolution and possibly lack adequate lighting. No amount of enhancement can save those.

A slow shutter speed and/or camera movement causes blur. If you are still and the object is moving fast, the resulting blur portrays movement. A small field of view – such as close up or with a zoom – magnifies any small movement of the camera. Without a tripod, the picture will be blurry.

Many blobjects are consciously photographed with the best of intentions. But, some materialize unexpectedly, when the photographer sees the resulting photo and finds an anomalous blobject in it. Here is where our imagination kicks in and tries to match patterns in the photos with what we already have stored in our memory. We may not have noticed the bug or bird that zoomed through the photo or the play of shadow in light.

A film camera can malfunction. Light leakage or a mechanical glitch can cause a bizarre, unexpected trail on the image.

Recently, movement-triggered wildlife photos have captured fur-blurs (“blursters”?). An animal at very close range triggered the camera but precious little detail is in the image to allow one to figure out what critter was responsible.

Most unidentified blobjects are simply mistaken interpretation of unimpressive things like shadows, rocks and trees. There was the infamous case of Yeti rock (See it in this blog post) where a natural rock outcropping so resembled a bipedal creature that the explorer took a photo of it, convinced he saw a live, bipedal creature. (Later reconnaissance proved it was rock protruding from the snow.) I distinctly recall a Sasquatch-shaped arborvitae tree near my childhood home that looked down at me at sunset from the hilltop and gave me the willies.

Blobjective value

Do these blobject images have value? As real evidence, no. It is understandably difficult to go back and recreate the exact situation (season, time of day, weather conditions, etc.) in which the picture was taken and eliminate various explanations although you can possibly eliminate the misidentification of aforementioned rocks and trees. The photos themselves, by their very nature, do not contain enough detail to accurately measure and describe what is portrayed in the image. Poor quality imagery isn’t valuable in any scientific venture, what use can unidentified blobjects be to prove the existence of something many people doubt?

They are most capably used as inspiration – where they do have value. The ghost hunters and ufologists are rightly becoming weary of the hundreds of orb and blurfo picts sent to them by the eager public. Nevertheless, really unique blobsquatches, blursters, and aquatic blobsters generate endless commentary and speculation.

This blobject phenomenon is fascinating because the question of what was captured in the photo remains. Even if it wasn’t what we might wish – a groundbreaking scientific discovery – it may be an important lesson in optics, photo technology or human perception.

We can be assured that a long parade of blobsquatches and other indistinct visuals will continue to appear for our scrutiny. We can view them at all angles, zoom, crop, enhance, and speculate all we want – they will never be the solid scientific evidence we need to prove that something unknown really exists. But they can inspire us to debate, imagine, discover and learn.